Uncertainty Quantification of Calculated Temperatures for Advanced Gas Reactor Fuel Irradiation Experiments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Polynomial Chaos Techniques for Uncertainty Quantification of a Gas Cooled Fast Reactor Transient

Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing hig...

متن کامل

Thermomechanics of Candidate Coatings for Advanced Gas Reactor Fuels

Candidate fuel/coating combinations for an advanced, coated-fuel particle for a gascooled fast reactor (GFR) have been evaluated. These all-ceramic fuel forms consist of a fuel kernel made of UC or UN, surrounded with two shells (a buffer and a coating) made of TiC, SiC, ZrC, TiN, or ZrN. These carbides and nitrides are analyzed with finite element models to determine the stresses produced in t...

متن کامل

Polynomial regression with derivative information in nuclear reactor uncertainty quantification

We introduce a novel technique of uncertainty quantification using polynomial regression with derivative information and apply it to analyze the performance of a model of a sodium-cooled fast reactor. We construct a surrogate model as a goal-oriented projection onto an incomplete space of polynomials, find coordinates of projection by collocation, and use derivative information to reduce the nu...

متن کامل

Stochastic Polynomial Interpolation for Uncertainty Quantification With Computer Experiments

Abstract: Multivariate polynomial metamodels are widely used for uncertainty quantification due to the development of polynomial chaos methods and stochastic collocation. However, these metamodels only provide point predictions. There is no known method that can quantify interpolation error probabilistically and design interpolation points using available data to reduce the error. We shall intr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Technology

سال: 2016

ISSN: 0029-5450,1943-7471

DOI: 10.13182/nt16-31